
 هـ4445-م  2023. لسنة ( 3الرابع/ ملحق) /العددخامس المجلد ال / خامسةمجلة الدراسات المستدامة . السنة ال

 

513 
 

Transfer learning for the classification of the damaged solar cells using 

pre-trained networks 

MAHA SAFAR ABDULMAJEED 

University of Tikrit,Tikrit, Iraq 

ABSTRACT: 

Solar energy is one of the primary ways to generate electricity that is both environmentally 

friendly and has no adverse impacts. Solar panels are needed more than ever before to 

generate sustainable electricity. It goes without saying that occasionally, faulty components 

hinder technology or machinery from functioning properly. This also applies to solar panels, 

which can malfunction for a number of reasons, one of which being a broken panel cell that 

ultimately results in panel failure. On electroluminescence images taken with solar panels, 

artificial intelligence is essential for identifying damaged cells as soon as possible. Deep 

learning's transfer learning principle is useful for classifying damaged solar cells for this 

purpose. In this work, the pre-trained models ResNet50, VGG16, and InceptionV3 were 

employed. We also applied the transfer learning approach. We used a publicly accessible 

dataset from Kaggle, which consists of 2624 photos of solar cells, to train these models. For 

the aforementioned models, we have presented a thorough analysis and spoken about the 

model performance in terms of precision, F1-score, sensitivity, specificity, and accuracy. 

We have achieved an accuracies of 97.40% on ResNet50 model, 97.78% on VGG16 and 

95.83% on InceptionV3 model respectively 

Keywords:( Artificial intelligence, Transfer Learning) 

1. INTRODUCTION 

Green energy is one of the needs and demands of our world. One of the 

main advantages of green energy is that it is environmentally benign and 

somewhat more affordable than traditional energy sources [1-3]. Solar energy 

is one of the primary ways to generate electricity that is both environmentally 

friendly and has no adverse impacts [4-6]. 

As a result, the market has seen an increase in demand for solar panels 

that produce sustainable energy [7, 8]. Additionally, a detailed examination of 

the manufacturing and upkeep procedures is required due to the enormous 

volume of solar panels produced by robot assembly [9]. It goes without saying 

that occasionally, faulty components hinder technology or machinery from 

functioning properly. Similar circumstances apply to solar panels, which can 

malfunction for a number of reasons, one of which is a damaged panel cell that 

ultimately results in panel failure. Therefore, one must manually inspect the 
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cell in order to fix this problem, which is inefficient because it needs 

complexity to check for and identify the damaged cell and also increases the 

possibility of human error [10-12]. With the development of technology, 

artificial intelligence, a recent trend, has the potential to solve challenging 

issues in practically every industry. Deep learning, a subfield of artificial 

intelligence, is also very helpful for categorising various photographs [13]. 

Numerous academics have presented their research on the examination 

and detection of defective solar panels [14, 15]. For the inspection and 

detection of diseased solar panel cells, electroluminescence (EL), infrared (IR), 

and RGB images are generally used to classify damage vs. normal solar panel 

cells [16-18]. According to many research, specialised imaging techniques like 

electroluminescence (EL) are far more efficient than traditional charge-coupled 

device (CCD)-based imaging techniques for checking photovoltaics (PV) [19-

21]. Additionally, it has been shown that deep learning-based algorithms are 

among the clever algorithms that help with the resolution of many computer 

vision-based tasks, such as image categorization, object detection and 

recognition, and the assessment of image similarity [12, 22-24]. 

Utilizing imaging techniques based on electroluminescence, we 

classified the damaged photovoltaic cells using deep learning techniques that 

are based on convolutional neural networks. Furthermore, we have applied the 

concept of transfer learning to distinguish between damaged and healthy cells. 

The classification of the damaged PV cells has been addressed by several 

academics. According to a study [25] , transfer learning was used to categorise 

the damaged solar cells. With remote sensing photos serving as the input 

dataset, they used the pre-trained VGG16 model. A lightweight convolutional 

neural network was also suggested by the authors of [26] for the categorization 

of hotspots and damaged areas on solar cells. They had a 93.02% accuracy rate. 

Modified U-Net network has been utilized for the classification and 

identification of damaged cells from solar panel [27]. Similarly, multispectral 

neural network has been proposed by the authors of [28], and they achieved an 

accuracy of 94% for the classification solar cells. Deep learning has been used 

for feature extraction in order to do the classification of damaged parts of solar 

panels [29]. Alexnet model has been modified by the authors of [30] for the 

classification of the faulty solar cells. Also, the authors of [31] provided a 
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study while using convoutluional neural network (CNN) for the fault pattern 

detection. Similar to [31], the authors of [32] utilized five different CNN based 

networks for the classification of the damaged solar cells, while they achieved 

a highest accuracy of 98%. 

In our study, we tested the convolutional neural network's ability to 

accurately identify the images of defective solar cells. One of the newest 

methods, transfer learning, has been used by us. ResNet50, VGG16, and 

InceptionV3, pre-trained models that we utilised. Furthermore, we took 

advantage of a dataset that was made public and further divided it into train, 

valid, and test datasets. Additionally, Google Coolab, which provides 

momentary free access to GPU, was used to gather the results of this 

experiment. 

 

2. MATERIALS AND METHODS 

 

2.1.  Dataset 

Using defective solar cells, the classification of defective solar cells are 

performed (Electroluminescence Images). The dataset is divided into two 

categories: "Normal" and "Defective". Total of 2624 images in all, each image 

of 300x300 pixels are utilized. All 8-bit grayscale images that are being used in 

this study is available at Kaggle [33]. Figure 1 shows examples of images from 

the database. Following that, the dataset was divided into training and testing, 

with 1177 and 135 (defective + normal) photos utilised for each. The evulation 

of the ResNet50, VGG16, and InceptionV3 models has been carried out using 

the testing dataset. In addition, the training dataset was divided into the train 

and valid datasets. The loss graphs presented in section 3 were observed using 

the train and valid datasets. 

2.2.  Proposed methodology 

The model used for the transfer learning technique to identify and classify 

defective solar cells is shown in Figure 2. The model's objective is to divide 

input images into two groups: normal and damaged. Data preparation, which 

entails improving the data and normalising the pixels, and a second stage, 

which involves classification using the trained models, are both essential 

components of the utilised model (i.e., ResNet50, VGG16 and InceptionV3). 
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(a) (b) 

Figure 1. Samples from the dataset [33] (a) Defected solar cell and (b) Normal 

solar cell. 

 
Figure 2. Transfer Learning methodology for the classification of solar cells. 

Normalization and data augmentation are the next two processes in the 

data preprocessing process. During normalising, the picture pixels were shrunk 

to a range between 0 and 1. The dataset's photos were rescaled by multiplying 

each one by 1/255. While techniques like 1) a 30 degree rotation, and 2) 

vertical and horizontal flipping were used to supplement the data. Figure 3 

illustrates augmented images. 

 
Figure 3. Data augmentation used on the images. 
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Table 1. Pre-trained models parameter overview 

Model Layers Paramete

rs 

Input 

layer size 

Output 

layer size 

ResNet

50 

50 23 

million 

224, 

224, 3 

2,1 

VGG16 16 135 

milllio

n 

224, 

224, 3 

2,1 

Incepti

onV3 

48 23.9 

million 

224, 

224, 3 

2,1 

 

2.3.  Transfer learning using Pre-trained Models 

Convolutional neural network (CNN) models have been shown to be 

superior for classifying and processing images [34]. However, it is challenging 

to train these CNN models from scratch because there aren't many picture data 

sets accessible. With transfer learning, a deep learning model that was trained 

on a larger dataset can use that knowledge to complete a task with a smaller 

dataset. In this study, damaged cells and healthy cells were distinguished using 

pre-trained models from ResNet50, VGG16, and InceptionV3. The 

architectural descriptions of the ResNet50, VGG16, and InceptionV3 models 

are shown in Table 1. These pre-trained models have already been trained on 

an ImageNet dataset. A dense layer has been built to use the transfer learning 

technique in order to fine-tune the training parameters. To further remove the 

unassigned neuron weights in the pre-trained models, batch normalisation layer 

is also used. A new fully connected (FC) layer with a perceptron value of two 

that represents each class has been introduced in place of the final dense layers 

in ResNet50, VGG16, and InceptionV3. The hyper parameters are quite 

important for these pre-trained models. 

2.4.  Fine tuning and hyperparamters 

One of the essential elements on which the model is trained in transfer 

learning is fine tuning. The image was reduced to 224x224 pixels, Adam 

optimizers were used, and the following hyperparameters were maintained: 

momentum was set to 0.95, weight decay was set to 0.0005, batch size was set 
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to 10, and learning rate was set to 0.001 with a factor value of 0.7. Apart from 

the aforementioned parameters, the model was often having overfitting issues 

before these parameters were chosen after the model was trained on a variety 

of values. 

3. EXPERIMENTS AND RESULTS 

3.1.  Experimental Setup and Performance Metrices 

The dataset is assessed using the pre-trained models. Table 2 provides 

information on the train and test datasets and also applies a 90:10 training-to-

testing ratio. Utilizing the supplemented data, the suggested models have been 

trained. 

Table 2. Data splitting 

Classes Train Valid Test 

Defecte

d 

942 235 135 

Normal 942 235 135 

Total 1884 470 270 

 

The images were reduced in size for the train and valid datasets to 

224224 pixels. Pre-trained models were only allowed to be trained in batches 

of 10 with an epochs value of 80. The batch size value and the number of 

epochs were manually chosen using empirical approaches. For training, the 

learning rate of each model has been set to 0.001, and the Adam optimizer has 

been used to lower errors. The success of the Inceptionv3 model has also been 

evaluated using metrics such as Specificity (Spe), Sensitivity (Sen), Precision 

(Pre), F1-Score, and Accuracy (Acc). The True Positive (TP), True Negative 

(TN), False Positive (FP), and False Negative (FN) components of the 

confusion matrix were varied to produce these measurements. These equations 

have been computed using Equations (1)-(6) [35]. 
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In this study, normal and faulty were seen as negative and positive 

categories, respectively. The normal and defective classes are thus indicated by 

the TN and TP, respectively. While FN and FP stand for incorrectly classifying 

expected normal instances and defects, respectively. 

 

3.2.  Results and discussions 

Model performance has been compared in terms of elements like training 

loss, validation loss, and validation accuracy at each epoch value. The results 

for these parameters are listed in Table 3. To determine the over- and under-

fitting of the training models, the parameters were evaluated. For each model 

under investigation and training loss. 

In order to further confirm performance, confusion matrices have been 

developed to classify true positive, true negative, false positive, and false 

negative data after training. On the test dataset, the confusion matrices for the 

pre-trained model are shown in Figure 4. Equations (1) through (6) have been 

used to evaluate the trained models' performance metrics using the data 

produced by confusion matrices, including precision, recall, F1 score, 

sensitivity, specificity, and accuracy. The results for the parameters that were 

previously mentioned are shown in Table 4. 

Table 3. Training performance of pre-trained models 

Model Epochs Train loss Valid loss Train 

accuracy 

Valid 

accuracy 

ResNet

50 

1 0.812 0.832 68.24 71.42 

. . . . . 
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. . . . . 

79 0.132 0.123 94.61 93.32 

80 0.131 0.108 94.53 95.63 

VGG16 

1 0.712 0.794 78.31 73.68 

. . . . . 

. . . . . 

79 0.101 0.112 95.23 95.87 

80 0.009 0.102 97.52 96.88 

Incepti

onV3 

1 0.712 0.842 69.54 70.23 

. . . . . 

. . . . . 

79 0.121 0.132 93.71 93.32 

80 0.112 0.181 95.83 95.65 

 

  
(a) (b) 
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(c) 

Figure 4. Confusion metrices achieved on each model for test dataset (a) 

ResNet50 (b) InceptionV3 (c) VGG16. 

 

Table 4. Performance of the models 

Model Precision 
Recall F1-Score 

Sensitivit

y 

Specificit

y 

Accuracy 

ResNet

50 
97.87 97.82 97.77 97.82 94.07 97.40 

VGG16 97.08 96.27 98.52 98.50 97.79 97.78 

Incepti

onV3 

95.56 96.27 95.51 96.27 95.59 95.93 

 

3.2.1. Comparison with different optimizers 

VGG16 model which outperformed the rest of the models have been 

tested with various optimizers such as RMSProp, Adadelta, SGD, and Adam, 

in order to do the comparison of the accuracies on the testing datasetThe Adam 

optimizer produced the most promising results out of all the optimizers. Thus, 

Adam optimizer was chosen to train the model. The results in Table 5 were 

produced using the Adam optimizer. 

Table 5. Performance of VGG16 among different optimizer 

Model Optimiz

er 

Precisio

n 

Specifit

y 

Sensitivi

ty 

F1-score Accurac

y 

VGG1 Adam 97.0 96.2 98.5 98.5 97.7 
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6 SGD 83.0 89.0 95.2 0.89 90.3 

Adadelt

a 

92.3 91.4 92.1 0.92 92.1 

RMSPro

p 

95.6 92.3 94.7 0.94 95.5 

 

3.2.2. Comparison with different batch size 

One key hyper-parameter for Deep Neural Networks is batch size, 

according to experts. This study provides information on the effects of various 

batch sizes. Table 6 listed the test accuracy results obtained after training on 

various batch sizes, including 8, 10, and 12. It has been noted that a batch size 

of 10 results in improved testing performance. Thus all the models has been 

trained using batches of 10. 

 

Table 6. Testing accuracies on different batch sizes on ResNet50 

Model Batch size 

VGG16 

8 10 12 

85.27% 
97.78

% 

90.25

% 

 

3.2.3. Future work 

This discovery has cleared the way for the development of effective deep 

neural networks that can quickly and precisely identify damaged solar cells. It 

is anticipated that the suggested model will perform remarkably well in terms 

of the classification problem between damaged and healthy solar cells. The 

performance of the suggested model might one day be used to categorise 

different classes of solar cells. We can also examine the use of optimization 

approaches with other DNNs in order to propose a potent model. 

 

4. CONCLUSION 

Using a pre-trained model, such as ResNet50, VGG16, and InceptionV3, 

we used transfer learning to recognise and classify images of damaged solar 

cells. The model was trained using a dataset of 2624 images. A number of 

important factors, such as sensitivity, specificity, F1-score, precision, recall, 
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loss graphs, and confusion matrices, have been used to assess the model's 

accuracy. VGG16 was used to demonstrate an effective classification of the 

damaged and normal images. For VGG16, ResNet50, and InceptionV3, 

accuracy was reached at a rate of 97.78%, 97.40%, and 95.93%, respectively. 

The "Adam" optimizer, which was the best of all the optimizers used, was 

applied to the DNNs. 
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